3.2 \(\int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx\)

Optimal. Leaf size=119 \[ \frac {a \cos ^7(c+d x)}{7 d}+\frac {a \cos ^6(c+d x)}{6 d}-\frac {3 a \cos ^5(c+d x)}{5 d}-\frac {3 a \cos ^4(c+d x)}{4 d}+\frac {a \cos ^3(c+d x)}{d}+\frac {3 a \cos ^2(c+d x)}{2 d}-\frac {a \cos (c+d x)}{d}-\frac {a \log (\cos (c+d x))}{d} \]

[Out]

-a*cos(d*x+c)/d+3/2*a*cos(d*x+c)^2/d+a*cos(d*x+c)^3/d-3/4*a*cos(d*x+c)^4/d-3/5*a*cos(d*x+c)^5/d+1/6*a*cos(d*x+
c)^6/d+1/7*a*cos(d*x+c)^7/d-a*ln(cos(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {3872, 2836, 12, 88} \[ \frac {a \cos ^7(c+d x)}{7 d}+\frac {a \cos ^6(c+d x)}{6 d}-\frac {3 a \cos ^5(c+d x)}{5 d}-\frac {3 a \cos ^4(c+d x)}{4 d}+\frac {a \cos ^3(c+d x)}{d}+\frac {3 a \cos ^2(c+d x)}{2 d}-\frac {a \cos (c+d x)}{d}-\frac {a \log (\cos (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])*Sin[c + d*x]^7,x]

[Out]

-((a*Cos[c + d*x])/d) + (3*a*Cos[c + d*x]^2)/(2*d) + (a*Cos[c + d*x]^3)/d - (3*a*Cos[c + d*x]^4)/(4*d) - (3*a*
Cos[c + d*x]^5)/(5*d) + (a*Cos[c + d*x]^6)/(6*d) + (a*Cos[c + d*x]^7)/(7*d) - (a*Log[Cos[c + d*x]])/d

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2836

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d*x)/b
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx &=-\int (-a-a \cos (c+d x)) \sin ^6(c+d x) \tan (c+d x) \, dx\\ &=\frac {\operatorname {Subst}\left (\int \frac {a (-a-x)^3 (-a+x)^4}{x} \, dx,x,-a \cos (c+d x)\right )}{a^7 d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {(-a-x)^3 (-a+x)^4}{x} \, dx,x,-a \cos (c+d x)\right )}{a^6 d}\\ &=\frac {\operatorname {Subst}\left (\int \left (a^6-\frac {a^7}{x}+3 a^5 x-3 a^4 x^2-3 a^3 x^3+3 a^2 x^4+a x^5-x^6\right ) \, dx,x,-a \cos (c+d x)\right )}{a^6 d}\\ &=-\frac {a \cos (c+d x)}{d}+\frac {3 a \cos ^2(c+d x)}{2 d}+\frac {a \cos ^3(c+d x)}{d}-\frac {3 a \cos ^4(c+d x)}{4 d}-\frac {3 a \cos ^5(c+d x)}{5 d}+\frac {a \cos ^6(c+d x)}{6 d}+\frac {a \cos ^7(c+d x)}{7 d}-\frac {a \log (\cos (c+d x))}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 86, normalized size = 0.72 \[ \frac {a \left (1120 \cos ^6(c+d x)-5040 \cos ^4(c+d x)+10080 \cos ^2(c+d x)-3675 \cos (c+d x)+735 \cos (3 (c+d x))-147 \cos (5 (c+d x))+15 \cos (7 (c+d x))-6720 \log (\cos (c+d x))\right )}{6720 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])*Sin[c + d*x]^7,x]

[Out]

(a*(-3675*Cos[c + d*x] + 10080*Cos[c + d*x]^2 - 5040*Cos[c + d*x]^4 + 1120*Cos[c + d*x]^6 + 735*Cos[3*(c + d*x
)] - 147*Cos[5*(c + d*x)] + 15*Cos[7*(c + d*x)] - 6720*Log[Cos[c + d*x]]))/(6720*d)

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 93, normalized size = 0.78 \[ \frac {60 \, a \cos \left (d x + c\right )^{7} + 70 \, a \cos \left (d x + c\right )^{6} - 252 \, a \cos \left (d x + c\right )^{5} - 315 \, a \cos \left (d x + c\right )^{4} + 420 \, a \cos \left (d x + c\right )^{3} + 630 \, a \cos \left (d x + c\right )^{2} - 420 \, a \cos \left (d x + c\right ) - 420 \, a \log \left (-\cos \left (d x + c\right )\right )}{420 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*sin(d*x+c)^7,x, algorithm="fricas")

[Out]

1/420*(60*a*cos(d*x + c)^7 + 70*a*cos(d*x + c)^6 - 252*a*cos(d*x + c)^5 - 315*a*cos(d*x + c)^4 + 420*a*cos(d*x
 + c)^3 + 630*a*cos(d*x + c)^2 - 420*a*cos(d*x + c) - 420*a*log(-cos(d*x + c)))/d

________________________________________________________________________________________

giac [B]  time = 0.24, size = 247, normalized size = 2.08 \[ \frac {420 \, a \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1 \right |}\right ) - 420 \, a \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1 \right |}\right ) + \frac {1473 \, a - \frac {11151 \, a {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {36813 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {69475 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {56035 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {28749 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {8463 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {1089 \, a {\left (\cos \left (d x + c\right ) - 1\right )}^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{{\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1\right )}^{7}}}{420 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*sin(d*x+c)^7,x, algorithm="giac")

[Out]

1/420*(420*a*log(abs(-(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 1)) - 420*a*log(abs(-(cos(d*x + c) - 1)/(cos(d*x
 + c) + 1) - 1)) + (1473*a - 11151*a*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 36813*a*(cos(d*x + c) - 1)^2/(cos
(d*x + c) + 1)^2 - 69475*a*(cos(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3 + 56035*a*(cos(d*x + c) - 1)^4/(cos(d*x +
 c) + 1)^4 - 28749*a*(cos(d*x + c) - 1)^5/(cos(d*x + c) + 1)^5 + 8463*a*(cos(d*x + c) - 1)^6/(cos(d*x + c) + 1
)^6 - 1089*a*(cos(d*x + c) - 1)^7/(cos(d*x + c) + 1)^7)/((cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 1)^7)/d

________________________________________________________________________________________

maple [A]  time = 0.61, size = 129, normalized size = 1.08 \[ -\frac {16 a \cos \left (d x +c \right )}{35 d}-\frac {a \cos \left (d x +c \right ) \left (\sin ^{6}\left (d x +c \right )\right )}{7 d}-\frac {6 a \cos \left (d x +c \right ) \left (\sin ^{4}\left (d x +c \right )\right )}{35 d}-\frac {8 a \cos \left (d x +c \right ) \left (\sin ^{2}\left (d x +c \right )\right )}{35 d}-\frac {a \left (\sin ^{6}\left (d x +c \right )\right )}{6 d}-\frac {a \left (\sin ^{4}\left (d x +c \right )\right )}{4 d}-\frac {a \left (\sin ^{2}\left (d x +c \right )\right )}{2 d}-\frac {a \ln \left (\cos \left (d x +c \right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))*sin(d*x+c)^7,x)

[Out]

-16/35*a*cos(d*x+c)/d-1/7/d*a*cos(d*x+c)*sin(d*x+c)^6-6/35/d*a*cos(d*x+c)*sin(d*x+c)^4-8/35/d*a*cos(d*x+c)*sin
(d*x+c)^2-1/6/d*a*sin(d*x+c)^6-1/4/d*a*sin(d*x+c)^4-1/2/d*a*sin(d*x+c)^2-a*ln(cos(d*x+c))/d

________________________________________________________________________________________

maxima [A]  time = 0.62, size = 91, normalized size = 0.76 \[ \frac {60 \, a \cos \left (d x + c\right )^{7} + 70 \, a \cos \left (d x + c\right )^{6} - 252 \, a \cos \left (d x + c\right )^{5} - 315 \, a \cos \left (d x + c\right )^{4} + 420 \, a \cos \left (d x + c\right )^{3} + 630 \, a \cos \left (d x + c\right )^{2} - 420 \, a \cos \left (d x + c\right ) - 420 \, a \log \left (\cos \left (d x + c\right )\right )}{420 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*sin(d*x+c)^7,x, algorithm="maxima")

[Out]

1/420*(60*a*cos(d*x + c)^7 + 70*a*cos(d*x + c)^6 - 252*a*cos(d*x + c)^5 - 315*a*cos(d*x + c)^4 + 420*a*cos(d*x
 + c)^3 + 630*a*cos(d*x + c)^2 - 420*a*cos(d*x + c) - 420*a*log(cos(d*x + c)))/d

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 89, normalized size = 0.75 \[ -\frac {a\,\cos \left (c+d\,x\right )-\frac {3\,a\,{\cos \left (c+d\,x\right )}^2}{2}-a\,{\cos \left (c+d\,x\right )}^3+\frac {3\,a\,{\cos \left (c+d\,x\right )}^4}{4}+\frac {3\,a\,{\cos \left (c+d\,x\right )}^5}{5}-\frac {a\,{\cos \left (c+d\,x\right )}^6}{6}-\frac {a\,{\cos \left (c+d\,x\right )}^7}{7}+a\,\ln \left (\cos \left (c+d\,x\right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^7*(a + a/cos(c + d*x)),x)

[Out]

-(a*cos(c + d*x) - (3*a*cos(c + d*x)^2)/2 - a*cos(c + d*x)^3 + (3*a*cos(c + d*x)^4)/4 + (3*a*cos(c + d*x)^5)/5
 - (a*cos(c + d*x)^6)/6 - (a*cos(c + d*x)^7)/7 + a*log(cos(c + d*x)))/d

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*sin(d*x+c)**7,x)

[Out]

Timed out

________________________________________________________________________________________